Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluation of a Concept for DI Gasoline Combustion Using Enhanced Gas Motion

1998-02-23
980152
A direct injection gasoline engine system which employs a unique combustion system with enhanced gas motion is evaluated. Enhanced gas motion is produced by employing both a moderately strong swirl flow and a cavity in the piston. Advantages of this system are that the injection timing or spark timing need not be controlled severely and that since the injection timing can be set at near the intake BDC, time for evaporation can be gained to reduce soot emissions. Problems to be improved are that the Nox emissions level is worse than other lean burn systems and full load operation is not evaluated. According to the numerical calculations, the problems may be solved by enhancing the in-cylinder gas motion with axial stratification of swirl intensity at intake BDC; strong swirl near the cylinder head and weak swirl near the piston surface.
Technical Paper

Effects of pre-chamber specifications on lean burn operation in a pre-chamber engine with fuel reformed gas

2023-09-29
2023-32-0007
Lean combustion has been well known to be an effective method to improve the thermal efficiency. However, leaner mixture is prone to cause the unstable combustion and poorer unburned hydrocarbon (UTHC) emissions. Pre-chamber turbulent jet combustion has been proved to enhance the combustion stability under ultra-lean conditions. However, more NOx is formed during the combustion, resulting in the fact that the tailpipe NOx emission is too high to be still not available for the real application. In this report, in order to achieve a higher air excess ratio while keeping lower UTHC emissions, and especially NOx emission, a new combustion technique which combined pre-chamber jet combustion with fuel reforming was proposed and experimentally demonstrated on a pre-chamber engine.
Technical Paper

Effects of In-Cylinder Flow and Stratified Mixture on HCCI Combustion in High Load

2018-10-30
2018-32-0016
The purpose of this paper is to find a way to extend the high load limit of homogeneous charge compression ignition (HCCI) combustion. This paper presents the effect of in-cylinder flow and stratified mixture on HCCI combustion by experiments and three-dimensional computer fluid dynamics coupled with a detailed chemical reaction calculation. The first study was conducted using a rapid compression and expansion machine (RCEM) equipped with a flow generation plate to create in-cylinder turbulent flow and with a control unit of in-cylinder wall temperature to create in-cylinder temperature distribution. The study assesses the effect of the turbulent flow and the temperature distribution on HCCI combustion. In the second study, the numerical simulation of HCCI combustion was conducted using large eddy simulation coupled with a detailed chemical reaction calculation. The study analyzes the interaction between in-cylinder turbulent flow and mixture distribution and HCCI combustion.
Technical Paper

Effects of Fuel and Diluents on Stratified Charge Turbulent Combustion in Simplified Conditions

2003-05-19
2003-01-1807
Stratified charge combustion system is widely used for production engines due to the significant potentials, such as low fuel consumption rate and low exhaust gas emissions. The combustion phenomena in simplified stratified charge conditions have been examined with changing the initial turbulence intensity, degree of mixture charge stratification, and kinds of fuels in order to clarify the features. Moreover, it should be noted that the stratified charge combustion may cause raising NOx formation. EGR (Exhaust Gas Recirculation) system is widely used for this solution. In this study, EGR was simulated by using dilution gases, such as CO2 and N2. Combustion characteristics in homogeneous and stratified charge fields with dilution gas were examined. As a result, some interesting combustion characteristics between CO2 and N2 depending on the specific heat, initial turbulence intensity, and degree of charge stratification were found.
Technical Paper

Effects of Engine Operating Condition and Fuel Property on Pre-Ignition Phenomenon in a Highly Boosted Premixed Natural Gas Engine

2019-12-19
2019-01-2154
The stochastic pre-ignition phenomenon plays a vital role to limit the further increasing BMEP for natural gas engines. In this study, the pre-ignition propensities were examined in a highly boosted premixed natural gas engine by various engine loads and air/fuel ratios, as well as different methane number (MN) altered by hydrogen addition. A proper pre-ignition evaluation method was proposed referring to intake temperature. Moreover, the limits of in-cylinder temperature and pressure for the onset of pre-ignition were estimated. The results show that both higher IMEP and richer mixture conditions readily lead to pre-ignition. The significant increases of pre-ignition frequency and heavy-knocking pre-ignition cycle present with lowering MN.
Technical Paper

Effects of Coolant Temperature and Fuel Properties on Soot Emission from a Spark-ignited Direct Injection Gasoline Engine

2019-12-19
2019-01-2352
Effects of measurement method, coolant temperature and fuel composition on soot emissions were examined by engine experiments. By reducing the pressure fluctuation in the sampling line, the measured soot emissions with better stability and reproducibility could be obtained. With lower coolant temperatures, larger soot emissions were yielded at much advanced fuel injection timings. Compared to gasoline, soot emissions with a blend fuel of normal heptane, isooctane and toluene were significantly decreased, suggesting the amounts of aromatic components (toluene or others) should be increased to obtain a representative fuel for the predictive model of particulate matter in SIDI engines.
Technical Paper

Effect of the Ratio Between Connecting-rod Length and Crank Radius on Thermal Efficiency

2006-11-13
2006-32-0098
In reciprocating internal combustion engines, the Otto cycle indicates the best thermal efficiency under a given compression ratio. To achieve an ideal Otto cycle, combustion must take place instantaneously at top dead center, but in fact, this is impossible. Meanwhile, if we allow slower piston motion around top dead center, combustion will be promoted at that period; then both the in-cylinder pressure and degree of constant volume will increase, leading to higher thermal efficiency. In order to verify this hypothesis, an engine with slower piston motion around top dead center, using an ideal constant volume combustion engine, was built and tested. As anticipated, the degree of constant volume increased. However, thermal efficiency was not improved, due to increased heat loss.
Technical Paper

Effect of Olefin Component Mixed to Gasoline on Thermal Efficiency in EGR Diluted Conditions Using Single-Cylinder Engine

2023-09-29
2023-32-0084
In internal combustion engine development, the ongoing research can be mainly classified into two categories based on the purpose: limiting exhaust emissions and searching for alternative fuels. One of the effective approaches reduce emissions is the improvement of thermal efficiency. Certain types of alternative fuels derived from renewable resources were estimated to confirm the thermal efficiency. This study uses a single-cylinder engine added with olefin and oxygenated additive fuel, such as 1-hexene, ethanol, and ETBE, to evaluate the parameters that affect thermal efficiency. Furthermore, the effects of various additive fuels are summarized and essential information is provided for determining next- generation fuel composition.
Technical Paper

Effect of Low Octane Gasoline on Performance of a HCCI Engine with the Blowdown Supercharging

2015-09-01
2015-01-1814
In this study, the effect of the low octane number fuel on HCCI engine performance was experimentally investigated using a slightly modified commercial four-cylinder gasoline engine. To operate the engine in HCCI strategy with wide operational range, the blowdwon supercharging (BDSC) system proposed by the authors was applied in the test engine. Research octane number (RON) of test fuels was varied from 90 to 78.5 as an experimental parameter. Experimental results showed that in the range of the present study, HCCI operational range, brake thermal efficiency and exhaust emissions during HCCI operation were little affected by the RON of the test fuels. In contrast, during SI operation, thermal efficiency was deteriorated with lower RON fuel because of knocking.
Journal Article

Effect of Fuel and Thermal Stratifications on the Operational Range of an HCCI Gasoline Engine Using the Blow-Down Super Charge System

2010-04-12
2010-01-0845
In order to extend the HCCI high load operational limit, the effects of the distributions of temperature and fuel concentration on pressure rise rate (dP/dθ) were investigated through theoretical and experimental methods. The Blow-Down Super Charge (BDSC) and the EGR guide parts are employed simultaneously to enhance thermal stratification inside the cylinder. And also, to control the distribution of fuel concentration, direct fuel injection system was used. As a first step, the effect of spatial temperature distribution on maximum pressure rise rate (dP/dθmax) was investigated. The influence of the EGR guide parts on the temperature distribution was investigated using 3-D numerical simulation. Simulation results showed that the temperature difference between high temperature zone and low temperature zone increased by using EGR guide parts together with the BDSC system.
Technical Paper

Effect of Coolant Water and Intake Air Temperatures on Thermal Efficiency of Gasoline Engines

2017-11-05
2017-32-0116
An optimization of thermal management system in a gasoline engine is considered to improve thermal efficiency by minimizing the cost increase without largely changing the configuration of engine system. In this study, the influence of water temperature and intake air temperature on thermal efficiency were investigated using an inline four-cylinder 1.2L gasoline engine. In addition, one-dimensional engine simulations were conducted by using a software of GT-SUITE. Brake thermal efficiency for different engine speeds and loads could be quantitatively predicted with changing the cooling water temperature in the cylinder head. Then, in order to predict the improvement of the fuel consumption in actual use, vehicle mode running simulation and general-purpose engine transient mode simulation were carried out by GT-SUITE. As a result, it was found that by controlling the temperatures of the cooling water and intake gas, thermal efficiency can be improved by several percent.
Technical Paper

Effect of Active Piston-Movement Control on Thermal Efficiency in Different Heat Release Profiles

2005-10-12
2005-32-0067
In order to improve thermal efficiency of spark ignition engines, the authors have studied means to improve degree of constant volume. The ideal Otto cycle realizes the maximal degree of constant volume with an instantaneous combustion at TDC. However, it is actually impossible to achieve instantaneous combustion as the combustion speed is limited. Thereby, the authors thought of an idea to increase degree of constant volume. That is to make the piston speed slow during combustion period by active piston-movement control, allowing more time for combustion. As a result, degree of constant volume was improved, but indicated thermal efficiency, estimated by integrating P-V diagram, was deteriorated. A longer expansion stroke was found to keep a longer period of high temperature and then, heat loss increased, leading to a decrease in indicated work.
Technical Paper

Driving Cycle Simulation of a Vehicle with Gasoline Homogeneous Charge Compression Ignition Engine Using a Low-RON Fuel

2016-10-17
2016-01-2297
An improvement of thermal efficiency of internal combustion engines is strongly required. Meanwhile, from the viewpoint of refinery, CO2 emissions and gasoline price decrease when lower octane gasoline can be used for vehicles. If lower octane gasoline is used for current vehicles, fuel consumption rate would increase due to abnormal combustion. However, if a Homogeneous Charge Compression Ignition (HCCI) engine were to be used, the effect of octane number on engine performance would be relatively small and it has been revealed that the thermal efficiency is almost unchanged. In this study, the engine performance estimation of HCCI combustion using lower octane gasoline as a vision of the future engine was achieved. To quantitatively investigate the fuel consumption performance of a gasoline HCCI engine using lower octane fuel, the estimation of fuel consumption under different driving test cycles with different transmissions is carried out using 1D engine simulation code.
Technical Paper

Development of a Novel Ignition System Using Repetitive Pulse Discharges: Ignition Characteristics of Premixed Hydrocarbon-Air Mixtures

2008-04-14
2008-01-0468
A newly developed small-sized IES (inductive energy storage) circuit with static induction thyristor at turn-off action was successfully applied to an ignition system. This IEC circuit can generate repetitive nanosecond pulse discharges. In this paper, the ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems. The experiments were conducted using spherically expanding flame configuration for CH4 and C3H8-air mixtures under various conditions. In conclusions, the ignition system using repetitive nanosecond pulse discharges was found to extend lean flammability limits compared with conventional spark ignition systems. In addition, the ignition system using repetitive nanosecond pulse discharges could shorten ignition delay time.
Journal Article

Development of a Novel Ignition System Using Repetitive Pulse Discharges: Application to a SI Engine

2009-04-20
2009-01-0505
A newly developed small-sized IES (inductive energy storage) circuit with semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems. Experiments were conducted using spherically expanding flame configuration for CH4 and C3H8-air mixtures under various conditions. The ignition system using repetitive nanosecond pulse discharges was found to improve inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses. The authors seek for the mechanisms for improving the inflammability in more detail to optimize ignition system, and verify the effectiveness of IES circuit in EGR condition, for real engine use.
Technical Paper

Combustion Enhancement of Very Lean Premixture Part in Stratified Charge Conditions

1996-10-01
962087
Local inhomogeneity of mixture concentration affects combustion characteristics in the lean burn system and also in the stratified charge combustion system. To investigate such combustion systems, the effects of inhomogeneous mixtures were examined using a carefully controlled experimental system. In this study, a constant-volume chamber, which can simulate an idealized stratified charge by using a removable partition inside the chamber, was developed. Flow and combustion characteristics were examined by indicated pressure analysis, Schlieren photography, ion probe measurements and local equivalence ratios measurements while varying the combination of initial equivalence ratios on each side of the partition. As a result, combustion characteristics of charge stratified, very lean propane-air mixture were clarified.
Technical Paper

Combustion Enhancement in a Gas Engine Using Low Temperature Plasma

2020-04-14
2020-01-0823
Low temperature plasma ignition has been proposed as a new ignition technique as it has features of good wear resistance, low energy release and combustion enhancement. In the authors’ previous study, lean burn limit could be extended slightly by low temperature plasma ignition while the power supply’s performance with steep voltage rising with time (dV/dt), showed higher peak value of the rate of heat release and better indicated thermal efficiency. In this study, basic study of low temperature plasma ignition system was carried out to find out the reason of combustion enhancement. Moreover, the durability test of low temperature plasma plug was performed to check the wear resistance.
Technical Paper

Combustion Characteristics of a Direct Injection Stratified Charge Rotary Engine Using Spark Ignition and Pilot Flame Ignition Systems

2002-10-29
2002-32-1791
A Direct Injection Stratified Charge Rotary Engine (DISC-RE) with a pilot flame ignition system which has high ignition energy, large flame contact area and long duration of ignition source, has been examined comparing with a spark ignition system, using a model combustion chamber simulating a DISC-RE. As a result, it was found that the combustion using the pilot flame ignition system was activated and that a better ignitability was attained under lean mixture conditions than using a spark ignition system. To analyze these experimental results, numerical calculations of the mixture formation and combustion process were carried out. Numerical analyses proved that the pilot flame ignition system was superior to the spark ignition system as the pilot flame ignition made large-area ignition source and large inflammable mixture region. Finally, a single rotor with 650 cc displacement DISC-RE was built as a prototype.
Technical Paper

Analysis of Mixture Formation Process with a Swirl-Type Injector

2000-06-19
2000-01-2057
A swirl-type injector is commonly used for the gasoline direct injection IC engines. To control and optimize the engine combustion, analyses of mixture formation process inside the cylinder are quite important. In this study, an evaluation of a DDM (Discrete Droplet Model) including breakup and evaporation sub-models has been made by making comparisons between the calculation and measurement. In the calculation, two kinds of initial conditions were tested; one was from empirical expressions and the other was from calculated results using a VOF (Volume Of Fluid) model that had a feature to examine the free fluid surface of a liquid fuel spray. As a result, the authors have found that a DDM can basically explain the spray formation process. However, much further modification of the breakup model and initial conditions would be required to have a quantitatively good agreement between the calculation and measurement
Technical Paper

Analysis of Mixture Formation Process in a Reverse Uniflow-Type Two-Stroke Gasoline DI Engine

2002-10-29
2002-32-1774
A reverse uniflow-type two-stroke gasoline direct injection engine, which has potentials of high power weight ratio, high thermal efficiency and low exhaust gas emissions, has been developed and tested. In this study, one of the features of this engine: very low cycle-to-cycle combustion variation at idling condition, is focused to clarify the reasons. To achieve this, a transparent cylinder model engine was designed and built to visualize the in-cylinder mixture formation process, and the free spray characteristics of a swirl-type injector were examined using a large chamber with changing the injection pressure, environmental gas pressure, and the gas temperature. As a result, the reasons of stable idling operation were deduced.
X